Search This Blog

Friday 18 March 2011

EARTHQUAKE

An earthquake (also known as a quake, tremor or temblor) is the result of a sudden release of energy in the Earth's crust that creates seismic waves. The seismicity or seismic activity of an area refers to the frequency, type and size of earthquakes experienced over a period of time. Earthquakes are measured with a seismometer (also called a seismograph). The moment magnitude (or the obsolete Richter magnitude, numerically similar over the range of validity of the Richter scale) of an earthquake is conventionally reported, with magnitude 3 or lower earthquakes being mostly almost imperceptible and magnitude 7 and over causing serious damage over large areas. The largest earthquakes in historic times have been of magnitude slightly over 9, although there is no limit to the possible magnitude. The most recent large earthquake of magnitude 9.0 or larger was a 9.0 magnitude earthquake in Japan in 2011 (as of March 2011), and it was the largest Japanese earthquake since records began. Intensity of shaking is measured on the modified Mercalli scale. The shallower an earthquake, the more damage to structures it causes, all else being equal.[1]

At the Earth's surface, earthquakes manifest themselves by shaking and sometimes displacement of the ground. When a large earthquake epicenter is located offshore, the seabed may be displaced sufficiently to cause a tsunami. Earthquakes can also trigger landslides, and occasionally volcanic activity.

In its most general sense, the word earthquake is used to describe any seismic event—whether natural or caused by humans—that generates seismic waves. Earthquakes are caused mostly by rupture of geological faults, but also by other events such as volcanic activity, landslides, mine blasts, and nuclear tests. An earthquake's point of initial rupture is called its focus or hypocenter. The epicenter is the point at ground level directly above the hypocenter.

Tectonic earthquakes occur anywhere in the earth where there is sufficient stored elastic strain energy to drive fracture propagation along a fault plane. In the case of transform or convergent type plate boundaries, which form the largest fault surfaces on earth, they move past each other smoothly and aseismically only if there are no irregularities or asperities along the boundary that increase the frictional resistance. Most boundaries do have such asperities and this leads to a form of stick-slip behaviour. Once the boundary has locked, continued relative motion between the plates leads to increasing stress and therefore, stored strain energy in the volume around the fault surface. This continues until the stress has risen sufficiently to break through the asperity, suddenly allowing sliding over the locked portion of the fault, releasing the stored energy. This energy is released as a combination of radiated elastic strain seismic waves, frictional heating of the fault surface, and cracking of the rock, thus causing an earthquake. This process of gradual build-up of strain and stress punctuated by occasional sudden earthquake failure is referred to as the elastic-rebound theory. It is estimated that only 10 percent or less of an earthquake's total energy is radiated as seismic energy. Most of the earthquake's energy is used to power the earthquake fracture growth or is converted into heat generated by friction. Therefore, earthquakes lower the Earth's available elastic potential energy and raise its temperature, though these changes are negligible compared to the conductive and convective flow of heat out from the Earth's deep interior.[2]

Earthquake fault types

MAIN ARTICLE:Fault (geology)

There are three main types of fault that may cause an earthquake: normal, reverse (thrust) and strike-slip. Normal and reverse faulting are examples of dip-slip, where the displacement along the fault is in the direction of dip and movement on them involves a vertical component. Normal faults occur mainly in areas where the crust is being extended such as a divergent boundary. Reverse faults occur in areas where the crust is being shortened such as at a convergent boundary. Strike-slip faults are steep structures where the two sides of the fault slip horizontally past each other; transform boundaries are a particular type of strike-slip fault. Many earthquakes are caused by movement on faults that have components of both dip-slip and strike-slip; this is known as oblique slip.

Earthquakes away from plate boundaries
Main article: Intraplate earthquake

Where plate boundaries occur within continental lithosphere, deformation is spread out over a much larger area than the plate boundary itself. In the case of the San Andreas fault continental transform, many earthquakes occur away from the plate boundary and are related to strains developed within the broader zone of deformation caused by major irregularities in the fault trace (e.g., the “Big bend” region). The Northridge earthquake was associated with movement on a blind thrust within such a zone. Another example is the strongly oblique convergent plate boundary between the Arabian and Eurasian plates where it runs through the northwestern part of the Zagros mountains. The deformation associated with this plate boundary is partitioned into nearly pure thrust sense movements perpendicular to the boundary over a wide zone to the southwest and nearly pure strike-slip motion along the Main Recent Fault close to the actual plate boundary itself. This is demonstrated by earthquake focal mechanisms.[3]

All tectonic plates have internal stress fields caused by their interactions with neighbouring plates and sedimentary loading or unloading (e.g. deglaciation[4]). These stresses may be sufficient to cause failure along existing fault planes, giving rise to intraplate earthquakes.[5]
Shallow-focus and deep-focus earthquakes

The majority of tectonic earthquakes originate at the ring of fire in depths not exceeding tens of kilometers. Earthquakes occurring at a depth of less than 70 km are classified as 'shallow-focus' earthquakes, while those with a focal-depth between 70 and 300 km are commonly termed 'mid-focus' or 'intermediate-depth' earthquakes. In subduction zones, where older and colder oceanic crust descends beneath another tectonic plate, deep-focus earthquakes may occur at much greater depths (ranging from 300 up to 700 kilometers).[6] These seismically active areas of subduction are known as Wadati-Benioff zones. Deep-focus earthquakes occur at a depth where the subducted lithosphere should no longer be brittle, due to the high temperature and pressure. A possible mechanism for the generation of deep-focus earthquakes is faulting caused by olivine undergoing a phase transition into a spinel structure.[7]

Earthquakes and volcanic activity

Earthquakes often occur in volcanic regions and are caused there, both by tectonic faults and the movement of magma in volcanoes. Such earthquakes can serve as an early warning of volcanic eruptions, as during the Mount St. Helens eruption of 1980.[8] Earthquake swarms can serve as markers for the location of the flowing magma throughout the volcanoes. These swarms can be recorded by seismometers and tiltmeters (a device that measures ground slope) and used as sensors to predict imminent or upcoming eruptions.[9]

Rupture dynamics

A tectonic earthquake begins by an initial rupture at a point on the fault surface, a process known as nucleation. The scale of the nucleation zone is uncertain, with some evidence, such as the rupture dimensions of the smallest earthquakes, suggesting that it is smaller than 100 m while other evidence, such as a slow component revealed by low-frequency spectra of some earthquakes, suggest that it is larger. The possibility that the nucleation involves some sort of preparation process is supported by the observation that about 40% of earthquakes are preceded by foreshocks. Once the rupture has initiated it begins to propagate along the fault surface. The mechanics of this process are poorly understood, partly because it is difficult to recreate the high sliding velocities in a laboratory. Also the effects of strong ground motion make it very difficult to record information close to a nucleation zone.[10]

Rupture propagation is generally modelled using a fracture mechanics approach, likening the rupture to a propagating mixed mode shear crack. The rupture velocity is a function of the fracture energy in the volume around the crack tip, increasing with decreasing fracture energy. The velocity of rupture propagation is orders of magnitude faster than the displacement velocity across the fault. Earthquake ruptures typically propagate at velocities that are in the range 70–90 % of the S-wave velocity and this is independent of earthquake size. A small subset of earthquake ruptures appear to have propagated at speeds greater than the S-wave velocity. These supershear earthquakes have all been observed during large strike-slip events. The unusually wide zone of coseismic damage caused by the 2001 Kunlun earthquake has been attributed to the effects of the sonic boom developed in such earthquakes. Some earthquake ruptures travel at unusually low velocities and are referred to as slow earthquakes. A particularly dangerous form of slow earthquake is the tsunami earthquake, observed where the relatively low felt intensities, caused by the slow propagation speed of some great earthquakes, fail to alert the population of the neighbouring coast, as in the 1896 Meiji-Sanriku earthquake.[10]

Earthquake clusters

Most earthquakes form part of a sequence, related to each other in terms of location and time.[11] Most earthquake clusters consist of small tremors that cause little to no damage, but there is a theory that earthquakes can recur in a regular pattern.[

Sunday 6 March 2011

The Cathode Ray Tube (CRT)

The Cathode Ray Tube (CRT) is a vacuum tube containing an electron gun (a source of electrons) and a fluorescent screen, with internal or external means to accelerate and deflect the electron beam, used to create images in the form of light emitted from the fluorescent screen. The image may represent electrical waveforms (oscilloscope), pictures (television, computer monitor), radar targets and others.

The CRT uses an evacuated glass envelope which is large, deep, heavy, and relatively fragile.


History
A common CRT used in computer monitors and television sets

The experimentation of cathode rays is largely accredited to J.J. Thomson, an English physicist who, in his three famous experiments, was able to deflect cathode rays, a fundamental function of the modern CRT. The earliest version of the CRT was invented by the German physicist Ferdinand Braun in 1897 and is also known as the Braun tube. It was a cold-cathode diode, a modification of the Crookes tube with a phosphor-coated screen.

In 1907, Russian scientist Boris Rosing used a CRT in the receiving end of an experimental video signal to form a picture. He managed to display simple geometric shapes onto the screen, which marked the first time that CRT technology was used for what is now known as television.

The first cathode ray tube to use a hot cathode was developed by John B. Johnson (who gave his name to the term Johnson noise) and Harry Weiner Weinhart of Western Electric, and became a commercial product in 1922.


Overview
A cathode ray tube is a vacuum tube which consists of one or more electron guns, possibly internal electrostatic deflection plates, and a phosphor target. In television sets and computer monitors, the entire front area of the tube is scanned repetitively and systematically in a fixed pattern called a raster. An image is produced by controlling the intensity of each of the three electron beams, one for each additive primary color (red, green, and blue) with a video signal as a reference. In all modern CRT monitors and televisions, the beams are bent by magnetic deflection, a varying magnetic field generated by coils and driven by electronic circuits around the neck of the tube, although electrostatic deflection is commonly used in oscilloscopes, a type of diagnostic instrument.
Electron gun


Oscilloscope CRTs
In oscilloscope CRTs, electrostatic deflection is used, rather than the magnetic deflection commonly used with television and other large CRTs. The beam is deflected horizontally by applying an electric field between a pair of plates to its left and right, and vertically by applying an electric field to plates above and below. Oscilloscopes use electrostatic rather than magnetic deflection because the inductive reactance of the magnetic coils would limit the frequency response of the instrument.


Phosphor persistence
Various phosphors are available depending upon the needs of the measurement or display application. The brightness, color, and persistence of the illumination depends upon the type of phosphor used on the CRT screen. Phosphors are available with persistences ranging from less than one microsecond to several seconds. For visual observation of brief transient events, a long persistence phosphor may be desirable. For events which are fast and repetitive, or high frequency, a short-persistence phosphor is generally preferable.
[edit] Microchannel plate

When displaying fast one-shot events the electron beam must deflect very quickly, with few electrons impinging on the screen; leading to a faint or invisible image on the display. Oscilloscope CRTs designed for very fast signals can give a brighter display by passing the electron beam through a micro-channel plate just before it reaches the screen. Through the phenomenon of secondary emission this plate multiplies the number of electrons reaching the phosphor screen, giving a significant improvement in writing rate (brightness), and improved sensitivity and spot size as well.


Graticules
Most oscilloscopes have a graticule as part of the visual display, to facilitate measurements. The graticule may be permanently marked inside the face of the CRT, or it may be a transparent external plate. External graticules are typically made of glass or acrylic plastic. An internal graticule provides an advantage in that it eliminates parallax error. Unlike an external graticule, an internal graticule can not be changed to accommodate different types of measurements. Oscilloscopes commonly provide a means for the graticule to be side-illuminated, which improves its visibility when used in a darkened room or when shaded by a camera hood.


Color CRTs
Spectra of constituent blue, green and red phosphors in a common CRT Color tubes use three different phosphors which emit red, green, and blue light respectively. They are packed together in stripes (as in aperture grille designs) or clusters called "triads" (as in shadow mask CRTs) Color CRTs have three electron guns, one for each primary color, arranged either in a straight line or in a triangular configuration (the guns are usually constructed as a single unit). A grille or mask absorbs the electrons that would otherwise hit the wrong phosphor.[14] A shadow mask tube uses a metal plate with tiny holes, placed so that the electron beam only illuminates the correct phosphors on the face of the tube.[13] Another type of color CRT uses an aperture grille to achieve the same result.


Convergence in color CRTs
The three beams in color CRTs would not strike the screen at the same point without convergence calibration. Instead, the set would need to be manually adjusted to converge the three color beams together to maintain color accuracy.


Degaussing
Most CRT television sets and computer monitors have a built-in degaussing (demagnetizing) coil, which upon power-up creates a brief, alternating magnetic field which decays in strength over the course of a few seconds. This degaussing field is strong enough to remove most cases of shadow mask magnetization.


Vector monitors
Vector monitors were used in early computer aided design systems and in some late-1970s to mid-1980s arcade games such as Asteroids. They draw graphics point-to-point, rather than scanning a raster.


CRT resolution
Dot pitch defines the maximum resolution of the display, assuming delta-gun CRTs. In these, as the scanned resolution approaches the dot pitch resolution, moiré appears, as the detail being displayed is finer than what the shadow mask can render.[18] Aperture grille monitors do not suffer from vertical moiré, however, because their phosphor stripes have no vertical detail. In smaller CRTs, these strips maintain position by themselves, but larger aperture grille CRTs require one or two crosswise (horizontal) support strips.


Gamma
CRTs have a pronounced triode characteristic, which results in significant gamma (a nonlinear relationship in an electron gun between applied video voltage and light intensity).


Other types of CRTs
Cat's eye
In better quality tube radio sets a tuning guide consisting of a phosphor tube was used to aid the tuning adjustment. This was also known as a "Magic Eye" or "Tuning Eye". Tuning would be adjusted until the width of a radial shadow was minimized. This was used instead of a more expensive electromechanical meter, which later came to be used on higher-end tuners when transistor sets lacked the high voltage required to drive the device. The same type of device was used with tape recorders as a recording level meter.


Charactrons
Some displays for early computers (those that needed to display more text than was practical using vectors, or that required high speed for photographic output) used Charactron CRTs. These incorporate a perforated metal character mask (stencil), which shapes a wide electron beam to form a character on the screen. The system selects a character on the mask using one set of deflection circuits, but that causes the extruded beam to be aimed off-axis, so a second set of deflection plates has to re-aim the beam so it is headed toward the center of the screen. A third set of plates places the character wherever required. The beam is unblanked (turned on) briefly to draw the character at that position. Graphics could be drawn by selecting the position on the mask corresponding to the code for a space (in practice, they were simply not drawn), which had a small round hole in the center; this effectively disabled the character mask, and the system reverted to regular vector behavior. Charactrons had exceptionally-long necks, because of the need for three deflection systems.


Nimo
Nimo tube BA0000-P31
Nimo was the trademark of a family of small specialised CRTs manufactured by Industrial Electronics Engineers. These had 10 electron guns which produced electron beams in the form of digits in a manner similar to that of the charactron. The tubes were either simple single-digit displays or more complex 4- or 6- digit displays produced by means of a suitable magnetic deflection system. Having little of the complexities of a standard CRT, the tube required a relatively simple driving circuit, and as the image was projected on the glass face, it provided a much wider viewing angle than competitive types (e.g. nixie tubes).


Zeus Thin CRT Displays
In the late 1990s and early 2000s Philips Research Laboratories experimented with a type of thin CRT known as the Zeus display which contained CRT-like functionality in a flat panel. The devices were demonstrated but never marketed.


The future of CRT technology
Demise
Although a mainstay of display technology for decades, the demand for CRT screens has dropped precipitously since 2000, and this falloff has been accelerating in the latter half of that decade. The rapid advances and falling prices of LCD flat panel technology, first for computer monitors and then for televisions, has been the key factor in the demise of competing display technologies such as CRT, rear-projection, and plasma display.

The end of most high-end CRT production by around 2010 (including high-end Sony and Mitsubishi product lines) means an erosion of the CRT's capability.In Canada and the United States, the sale and production of high-end CRT TVs (30-inch screens) in these markets has all but ended by 2007; just a couple years later inexpensive combo CRT TVs (20-inch screens with an integrated VHS or DVD player) have disappeared from discount stores. It has been common to replace CRT-based televisions and monitors in as little as 5–6 years, although they generally are capable of satisfactory performance for a much longer time.

Companies are responding to this trend. Electronics retailers such as Best Buy have been steadily reducing store spaces for CRTs. In 2005, Sony announced that they would stop the production of CRT computer displays. Samsung did not introduce any CRT models for the 2008 model year at the 2008 Consumer Electronics Show and on February 4, 2008 Samsung removed their 30" wide screen CRTs from their North American website and has not replaced them with new models.[35]

The demise of CRT, however, has been happening more slowly in the developing world. According to iSupply, production in units of CRTs was not surpassed by LCDs production until 4Q 2007, owing largely to CRT production at factories in China.

In the United Kingdom, DSG (Dixons), the largest retailer of domestic electronic equipment, reported that CRT models made up 80–90% of the volume of televisions sold at Christmas 2004 and 15–20% a year later, and that they were expected to be less than 5% at the end of 2006. Dixons ceased selling CRT televisions in 2007.


Causes
CRTs, despite recent advances, have remained relatively heavy and bulky and take up a lot of space in comparison to other display technologies. CRT screens have much deeper cabinets compared to flat panels and rear-projection displays for a given screen size, and so it becomes impractical to have CRTs larger than 40 inches (102 cm). The CRT disadvantages became especially significant in light of rapid technological advancements in LCD and plasma flat-panels which allow them to easily surpass 40 inches (102 cm) as well as being thin and wall-mountable, two key features that were increasingly being demanded by consumers.

By 2006, although the price points of CRTs are generally much lower than LCD and plasma flat panels, large screen CRTs (30-inches or more) are as expensive as a similar-sized LCD. While LCDs are generally the most expensive TV display technology, major innovations have caused prices to drop significantly.

Monochrome CRTs are even more efficient than color CRTs. This is because up to 2/3rds of the backlight power of LCD and rear-projection displays are lost to the RGB stripe filter. Most LCDs also have poorer color rendition and can change color with viewing angle, though modern PVA and IPS LCDs have greatly attenuated these problems.


Resurgence in specialized markets
In the first quarter of 2008, CRTs retook the #2 technology position in North America from plasma, due to the decline and consolidation of plasma display manufacturers. DisplaySearch has reported that although in the 4Q of 2007 LCDs surpassed CRTs in worldwide sales, CRTs then outsold LCDs in the 1Q of 2008.[38][39]

CRTs are useful for displaying photos with high pixels per unit area and correct color balance. LCDs, as currently the most common flatscreen technology, have generally inferior color rendition (despite having greater overall brightness) due to the fluorescent lights commonly used as a backlight.[40]

CRTs are still popular in the printing and broadcasting industries as well as in the professional video, photography, and graphics fields due to their greater color fidelity, contrast, and better viewing from off-axis (wider viewing angle). CRTs also still find adherents in video gaming because of their higher resolution per initial cost, lowest possible input lag, fast response time, and multiple native resolutions.


Health concerns
See also: Electronic waste
Ionizing radiation
CRTs can emit a small amount of X-ray radiation as a result of the electron beam's bombardment of the shadow mask/aperture grille and phosphors. The amount of radiation escaping the front of the monitor is widely considered unharmful. The Food and Drug Administration regulations in 21 C.F.R. 1020.10 are used to strictly limit, for instance, television receivers to 0.5 milliroentgens per hour (mR/h) (0.13 µC/(kg·h) or 36 pA/kg) at a distance of 5 cm (2 in) from any external surface; since 2007, most CRTs have emissions that fall well below this limit.[42]


Toxicity
Color and monochrome CRTs may contain toxic substances, such as cadmium, in the phosphors. The rear glass tube of modern CRTs may be made from leaded glass, which represent an environmental hazard if disposed of improperly.[46] By the time personal computers were produced, glass in the front panel (the viewable portion of the CRT) used barium rather than lead, though the rear of the CRT was still produced from leaded glass. Monochrome CRTs typically do not contain enough leaded glass to fail EPA tests.

In October 2001, the United States Environmental Protection Agency created rules stating that CRTs must be brought to special recycling facilities. In November 2002, the EPA began fining companies that disposed of CRTs through landfills or incineration. Regulatory agencies, local and statewide, monitor the disposal of CRTs and other computer equipment.

In Europe, disposal of CRT televisions and monitors is covered by the WEEE Directive.


Flicker
At low refresh rates (below 50 Hz), the periodic scanning of the display may produce an irritating flicker that some people perceive more easily than others, especially when viewed with peripheral vision. A high refresh rate (above 72 Hz) reduces the effect. Computer displays and televisions with CRTs driven by digital electronics often use refresh rates of 100 Hz or more to largely eliminate any perception of flicker. Non-computer CRTs or CRT for sonar or radar may have long persistence phosphor and are thus flicker free. If the persistence is too long on a video display, moving images will be blurred.
[edit] High-frequency noise

CRTs used for television operate with horizontal scanning frequencies of 15,734 Hz (for NTSC systems) or 15,625 Hz (for PAL systems).[50] These frequencies are at the upper range of human hearing and are inaudible to many people; some people will perceive a high-pitched tone near an operating television CRT.[51] The sound is due to magnetostriction in the magnetic core of the flyback transformer.


Implosion
A high vacuum exists within all cathode ray tubes, putting the envelope under relatively high stress. If the outer glass envelope is damaged, the glass will break and pieces will fly out at high speed. While modern Cathode Ray Tubes used in televisions and computer displays have epoxy-bonded face-plates or other measures to prevent shattering of the envelope, CRTs removed from equipment must be handled carefully to avoid personal injury.


Security concerns
Under some circumstances, the signal radiated from the electron guns, scanning circuitry, and associated wiring of a CRT can be captured and used to remotely reconstruct what is shown on the CRT, using a process called Van Eck phreaking.Special TEMPEST shielding can mitigate this effect. Such radiation of a potentially exploitable signal however occurs also with LCDs and with all electronics in general.


Recycling
As electronic waste, CRTs are considered one of the hardest types to recycle. CRTs have relatively high concentration of lead and phosphorus, both of which are necessary for the display. There are several companies in the United States that charge a small fee to collect CRTs, then subsidize their labor by selling the harvested copper, wire, and printed circuit boards. Leaded CRT glass is sold to get remelted into other CRTs, or even broken down and used in road construction.